Kinematics

Kinematics of Wheeled Mobile Robots (WMRs)

Robot Pose and Velocity Definitions

  • Robot pose in the inertial frame: ( Iη=[x,y,θ]TI \eta = [x, y, \theta]^T )

  • Velocity in the robot frame: ( Rη˙=[vx,vy,ω]TR \dot{\eta} = [v_x, v_y, \omega]^T )

  • Parameters:

  • ( vxv_x ): Forward velocity

  • ( vyv_y ): Lateral velocity (often constrained)

  • ( ω\omega ): Angular velocity

Wheel Types and Constraints

  1. Fixed Standard Wheel

  • Fixed orientation ( β\beta ) relative to chassis at location ( α\alpha ), ( l ) from center.

  • Rolling constraint: ( (IRRIη˙)cr=rϕ˙(I_R R I \dot{\eta}) \cdot c_r = r \dot{\phi} )

  • Slip constraint: ( (IRRIη˙)cs=0(I_R R I \dot{\eta}) \cdot c_s = 0 )

  1. Steered Standard Wheel

  • Similar to fixed, but steering angle ( β\beta ) is actively controlled as ( β(t)\beta(t) ).

  • Constraints are the same as Fixed Standard Wheel, but ( β\beta ) varies over time.

  1. Caster Wheel

  • Free steering joint with offset ( d ) between the steering axis and wheel contact point.

  • Rolling constraint: ( (IRRIη˙)cr=rϕ˙(I_R R I \dot{\eta}) \cdot c_r = r \dot{\phi} ))

  • Slipping constraint (allows steering rotation): ((IRRIη˙)cs=dβ˙)( (I_R R I \dot{\eta}) \cdot c_s = -d \dot{\beta} )

  1. Omnidirectional Wheel

  • Permits movement in any direction via rollers aligned obliquely to the main wheel.

  • No slip constraint; unique rolling dynamics.

Differential Drive Model

  • Two coaxial wheels independently driven with angular velocities (ϕ˙1),(ϕ˙2)( \dot{\phi}_1 ), ( \dot{\phi}_2 ).

  • Distance between wheels: ( 2L2L ), wheel radius: ( r r ).

Velocity calculations:

  • ( vx=r2(ϕ˙1+ϕ˙2)v_x = \frac{r}{2} (\dot{\phi}_1 + \dot{\phi}_2) )

  • ( vy=0v_y = 0 )

  • ( ω=r2L(ϕ˙1ϕ˙2)\omega = \frac{r}{2L} (\dot{\phi}_1 - \dot{\phi}_2) )

Simple Car Model (Bicycle Model)

Parameters:

  • ( L L ): Wheelbase distance

  • ( vv ): Forward velocity (determined by drivetrain)

  • ( ϕ\phi ): Steering angle

Velocity calculations

  • ( x˙=vcosθ \dot{x} = v \cos \theta )

  • ( x˙=vcosθ \dot{x} = v \cos \theta )

  • ( x˙=vcosθ \dot{x} = v \cos \theta )

Holonomic vs. Nonholonomic Systems

  1. Holonomic

  • Constraints integrable into positional form; all degrees of freedom controllable.

  • ( δm=DOF=3\delta_m = \text{DOF} = 3 )

  1. Nonholonomic

  • Velocity constraints non-integrable; limits movement flexibility.

  • ( δm<DOF\delta_m < \text{DOF} )

Manipulator Kinematics & D-H Parameters

Link parameters:

  • Link length: ( ai a_i )

  • Link twist angle: ( αi\alpha_i )

  • Link offset: ( did_i )

  • Joint angle: ( θi\theta_i )

Applications of D-H Parameters

  1. Forward Kinematics

  • Computes end-effector position from joint parameters.

  1. Inverse Kinematics

  • Calculates joint parameters to achieve a desired end-effector pose.

  1. Robot Control

  • Establishes a common reference for link movements.

  1. Trajectory Generation

  • Determines smooth paths by defining joint angle sequences

Last updated