🤖
Robotics Handbook
HomeConnect
  • Welcome
    • Authors Note
  • Computer Aided Designs and Simulations
    • Computer Aided Design and Simulations
    • 3D Modelling CAD
      • SolidWorks
    • Simulations
    • PCB Design
  • ROS (Advanced)
    • ROS
    • ROS
      • Concepts and Packages
      • Manual and Quick Setup
    • Some Important packages
  • Hardware
    • Design Processes
      • Materials Selection
      • Build and Prototyping
      • 3D Printing and Machining
    • Fabrication Parts
  • Common Mechanisms
    • Wheels and Drives
    • Power Transmission
  • Career Paths & Research Opportunities
    • Career in Robotics
    • Job Roles In Robotics
    • Conferences and Journals
  • Companies Hiring for Robotics
  • Leading Institutes
  • Mathematical and Programming Foundations
    • Linear Algebra for Robotics
    • Calculus
  • Programming for Robotics
    • Common Languages
    • Algorithms
    • Digital Twin
  • Embedded Systems for Robotics
    • Embedded Systems
    • Microcontrollers
      • Microcontrollers (Advanced Theory)
      • Choosing a Microcontroller
    • Sensors and Actuators
      • Sensors for Robotics
      • Actuators for Robotics
    • Communication
      • Communication Protocols
    • RTOS
    • Power Systems
      • Battery Charging and Storage Best Practices
  • ML and Perception
    • ML and Perception
    • Reinforcement Learning
    • Cameras, Depth Sensors and LiDAR
    • Image Processing Basics (OpenCV)
    • Object Detection and Tracking
    • Example of a Vision Pipeline
  • Mobile Robotics
    • Mobile Robotics
    • SLAM and Navigation
    • Robot Kinematics and Dynamics
      • Some Kinematic Models
    • Trajectory Planning
    • AMR's and AGV's
    • MH633 : Mobile Robotics
      • Geometric Foundations
      • Kinematics
  • Frontiers and Emerging Fields
    • Frontiers and Emerging Fields
    • Humanoids
    • Autonomous Navigation
    • Bio-inspired and Soft Robotics
    • Space Robotics
    • Cobots
    • Edge Robotics
    • Medical Robotics
  • Drones, Rocketry and Aviation
    • Drones
      • Drone Anatomy
    • Rocketry
Powered by GitBook
On this page
  1. Mobile Robotics
  2. MH633 : Mobile Robotics

Kinematics

PreviousGeometric FoundationsNextFrontiers and Emerging Fields

Last updated 14 hours ago

Kinematics of Wheeled Mobile Robots (WMRs)

Robot Pose and Velocity Definitions

  • Robot pose in the inertial frame: ( Iη=[x,y,θ]TI \eta = [x, y, \theta]^TIη=[x,y,θ]T )

  • Velocity in the robot frame: ( Rη˙=[vx,vy,ω]TR \dot{\eta} = [v_x, v_y, \omega]^T Rη˙​=[vx​,vy​,ω]T)

  • Parameters:

  • ( vxv_xvx​ ): Forward velocity

  • ( vyv_yvy​ ): Lateral velocity (often constrained)

  • ( ω\omegaω ): Angular velocity

Wheel Types and Constraints

  1. Fixed Standard Wheel

  • Fixed orientation ( β\beta β) relative to chassis at location ( α\alpha α), ( l ) from center.

  • Rolling constraint: ( (IRRIη˙)⋅cr=rϕ˙(I_R R I \dot{\eta}) \cdot c_r = r \dot{\phi}(IR​RIη˙​)⋅cr​=rϕ˙​ )

  • Slip constraint: ( (IRRIη˙)⋅cs=0(I_R R I \dot{\eta}) \cdot c_s = 0 (IR​RIη˙​)⋅cs​=0)

  1. Steered Standard Wheel

  • Similar to fixed, but steering angle ( β\betaβ ) is actively controlled as ( β(t)\beta(t)β(t) ).

  • Constraints are the same as Fixed Standard Wheel, but ( β\betaβ ) varies over time.

  1. Caster Wheel

  • Free steering joint with offset ( d ) between the steering axis and wheel contact point.

  • Rolling constraint: ( (IRRIη˙)⋅cr=rϕ˙(I_R R I \dot{\eta}) \cdot c_r = r \dot{\phi} (IR​RIη˙​)⋅cr​=rϕ˙​))

  • Slipping constraint (allows steering rotation): ((IRRIη˙)⋅cs=−dβ˙)( (I_R R I \dot{\eta}) \cdot c_s = -d \dot{\beta} )((IR​RIη˙​)⋅cs​=−dβ˙​)

  1. Omnidirectional Wheel

  • Permits movement in any direction via rollers aligned obliquely to the main wheel.

  • No slip constraint; unique rolling dynamics.

Differential Drive Model

  • Two coaxial wheels independently driven with angular velocities (ϕ˙1),(ϕ˙2)( \dot{\phi}_1 ), ( \dot{\phi}_2 )(ϕ˙​1​),(ϕ˙​2​).

  • Distance between wheels: ( 2L2L 2L), wheel radius: ( r rr ).

Velocity calculations:

  • ( vx=r2(ϕ˙1+ϕ˙2)v_x = \frac{r}{2} (\dot{\phi}_1 + \dot{\phi}_2)vx​=2r​(ϕ˙​1​+ϕ˙​2​) )

  • ( vy=0v_y = 0vy​=0 )

  • ( ω=r2L(ϕ˙1−ϕ˙2)\omega = \frac{r}{2L} (\dot{\phi}_1 - \dot{\phi}_2) ω=2Lr​(ϕ˙​1​−ϕ˙​2​))

Simple Car Model (Bicycle Model)

Parameters:

  • ( L LL ): Wheelbase distance

  • ( vvv ): Forward velocity (determined by drivetrain)

  • ( ϕ\phiϕ ): Steering angle

Velocity calculations

  • ( x˙=vcos⁡θ \dot{x} = v \cos \thetax˙=vcosθ )

  • ( x˙=vcos⁡θ \dot{x} = v \cos \thetax˙=vcosθ )

  • ( x˙=vcos⁡θ \dot{x} = v \cos \thetax˙=vcosθ )

Holonomic vs. Nonholonomic Systems

  1. Holonomic

  • Constraints integrable into positional form; all degrees of freedom controllable.

  • ( δm=DOF=3\delta_m = \text{DOF} = 3δm​=DOF=3 )

  1. Nonholonomic

  • Velocity constraints non-integrable; limits movement flexibility.

  • ( δm<DOF\delta_m < \text{DOF}δm​<DOF )

Manipulator Kinematics & D-H Parameters

Link parameters:

  • Link length: ( ai a_i ai​)

  • Link twist angle: ( αi\alpha_iαi​ )

  • Link offset: ( did_idi​ )

  • Joint angle: ( θi\theta_iθi​ )

Applications of D-H Parameters

  1. Forward Kinematics

  • Computes end-effector position from joint parameters.

  1. Inverse Kinematics

  • Calculates joint parameters to achieve a desired end-effector pose.

  1. Robot Control

  • Establishes a common reference for link movements.

  1. Trajectory Generation

  • Determines smooth paths by defining joint angle sequences